正确教育旗下网站
位置: 首页查看答案
设双曲线www.xiangpi.com的右焦点为F(c, 0), 方程ax2+bx-c=0的两个实根分别为x1, x2,则点P(x1, x2) (   )
A.必在圆x2+y2=2内B.必在圆x2+y2=2外
C.必在圆x2+y2=2上D.以上三种情况都有可能
必须注册【登录】后,才可以查看答案解析!
展开全文 考点梳理

点与圆的位置关系:

点与圆的位置关系:点在圆内、圆上、园外。
 

点与圆的位置关系的判定:

1.利用点到圆心的距离来判定:
已知点与圆(r>0),若,则
(1)点P在圆外;
(2)点P在圆上;
(3)点P在圆内。
2.利用圆的标准方程来判定:

 椭圆的离心率:

椭圆的焦距与长轴长之比叫做椭圆的离心率。

椭圆的性质:

1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:
5、离心率: 
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。

利用椭圆的几何性质解题:

利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。

椭圆中求最值的方法:

求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.

椭圆中离心率的求法:

在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,从而求离心率或离心率的取值范围.

试题推荐 换一批